
UDT: UDP based Data Transfer
Protocol, Results, and Implementation Experiences

Yunhong Gu & Robert Grossman
Laboratory for Advanced Computing / Univ. of Illinois at Chicago

Bill Allcock & Raj Kettimuthu
Globus Alliance / Argonne National Laboratory

02/17/2004 PFLDnet 2004 2

Outline

  UDT Protocol
  UDT Congestion Control
  Implementation/Simulation Results
  Implementation Experiences at ANL

02/17/2004 PFLDnet 2004 3

Design Goals and Assumptions

  Fast, Fair, Friendly
  High utilization of the abundant bandwidth with

either single or multiplexed connections
  Intra-protocol fairness, RTT independence
  TCP compatibility

  Low concurrency, high bandwidth, bulk data
  A small number of sources share abundant

bandwidth
  Most of the packets can be packed in maximum

segment size (MSS)

02/17/2004 PFLDnet 2004 4

  UDT: UDP based Data Transfer
  Reliable, application level, duplex, transport protocol, over

UDP with reliability, congestion, and flow control
  Implementation: Open source C++ library

  Two orthogonal parts
  The UDT protocol framework that can be implemented

above UDP, with any suitable congestion control algorithms
  The UDT congestion control algorithm, which can be

implemented in any transport protocols such as TCP

What’s UDT?

02/17/2004 PFLDnet 2004 5

UDT Protocol

DATA

ACK

ACK2

NAK

Sender

Recver

Sender

Recver

Packet Scheduling!

 ACK Timer!

 NAK Timer!

 Retransmission Timer!
 Rate Control Timer!

Sender

02/17/2004 PFLDnet 2004 6

UDT Protocol

  Packet based sequencing
  ACK sub-sequencing
  Explicit loss information feedback (NAK)
  Four timers: rate control, ACK, NAK and

retransmission timer
  Rate control and ACK are triggered periodically
  NAK timer is used to resend loss information if

retransmission is not received in an increasing
time interval

02/17/2004 PFLDnet 2004 7

Congestion Control

  Rate based congestion control (Rate Control)
  RC tunes the packet sending period.
  RC is triggered periodically.
  RC period is constant of 0.01 seconds.

  Window based flow control (Flow Control)
  FC limits the number of unacknowledged packets.
  FC is triggered on each received ACK.

  Slow start is controlled by FC
  Similar to TCP, but only occurs at the session

beginning.

02/17/2004 PFLDnet 2004 8

Rate Control

  AIMD: Increase parameter is related to link capacity
and current sending rate; Decrease factor is 1/9, but
not decrease for all loss events.

  Link capacity is probed by packet pair, which is
sampled UDT data packets.
  Every 16th data packet and it successor packet are sent

back to back to form a packet pair.

  The receiver uses a median filter on the interval between
the arrival times of each packet pair to estimate link
capacity.

… …

02/17/2004 PFLDnet 2004 9

Rate Control

  Number of packets to be increased in next rate
control period (RCTP) time is:

 where B is estimated link capacity, C is current sending rate.
Both are in packets per second. MSS is the packet size in
bytes. β = 1.5 * 10-6.

  Decrease sending rate by 1/9 when a NAK is
received, but only if

1.  largest lost sequence number in NAK is greater than the largest
sequence number when last decrease occurred; or

2.  The number of NAKs since last decrease has exceeded a
threshold, which increases exponentially and is reset when
condition 1 is satisfied.

02/17/2004 PFLDnet 2004 10

Rate Control

C (Mbps) B - C (Mbps) Increase Param. (Pkts)
[0, 9000) (1000, 10000] 10

[9000, 9900) (100, 1000] 1
[9900, 9990) (10, 100] 0.1
[9990, 9999) (1, 10] 0.01

[9999, 9999.9) (0.1, 1] 0.001
9999.9+ <0.1 0.00067

B = 10Gbps, MSS = 1500 bytes

02/17/2004 PFLDnet 2004 11

  W = W*0.875 + AS*(RTT+ATP)*0.125
  ATP is the ACK timer period, which is a

constant of 0.01 seconds.
  AS is the packets arrival speed at receiver

side.
  The receiver records the packet arrival intervals.
AS is calculated from the average of latest 16
intervals after a median filter.

  It is carried back within ACK.

BDP

Flow Control

02/17/2004 PFLDnet 2004 12

Implementation: Performance

02/17/2004 PFLDnet 2004 13

Implementation: Intra-protocol Fairness

02/17/2004 PFLDnet 2004 14

Implementation: TCP Friendliness

02/17/2004 PFLDnet 2004 15

Simulation: TCP Friendliness

02/17/2004 PFLDnet 2004 16

Simulation: RTT Independence

02/17/2004 PFLDnet 2004 17

Simulation: Convergence/Stability

02/17/2004 PFLDnet 2004 18

For More Information

  LAC: www.lac.uic.edu
  Internet Draft: draft-gg-udt-xx.txt
  UDT: sourceforge.net/projects/dataspace

Implementation Experiences of
UDT Driver for Globus XIO

Bill Allcock & Raj Kettimuthu
Globus Alliance
Argonne National Laboratory

02/17/2004 PFLDnet 2004 20

Globus XIO
  Extensible input/output library for the Globus

toolkit®.
  Simple intuitive open/close/read/write API.
  Provides a driver development interface.
  Framework takes care of non-protocol ancillary

requirements such as error handling etc.
  As Globus XIO has a built in UDP driver, the

framework assists greatly in developing reliable
layers on top of UDP.

  More details can be found at http://www-
unix.globus.org/developer/xio

02/17/2004 PFLDnet 2004 21

Improvements Made to UDT

  To make UDT closely resemble TCP,
developed server interface to handle multiple
connection requests

  Server listens on a known port for receiving
connection requests

  Upon receiving a request, a new socket
created and the port information
communicated to the client

02/17/2004 PFLDnet 2004 22

Improvements Made to UDT (cont.)

  Client establishes a new connection to this
port for data transfer

  Introduced some changes to the handshake
mechanism

  Requirements that we had
  Receiver not expected to know the transfer size.
  Sender does not communicate the transfer size to

the receiver.

02/17/2004 PFLDnet 2004 23

Improvements Made to UDT (cont.)

  Completion of transfer intimated by closing
UDT

  Had to introduce a close state machine into
the protocol

  Included new control messages for close
handling

02/17/2004 PFLDnet 2004 24

Performance

  Initial results
  Average throughput of 97 MBps on a GigE LAN
  Average throughput of 33 MBps over the wide

area link from ANL to LBL (bottleneck is OC12
link)

  Throughput over the wide area link is low
compared to the throughput achieved by the UIC
implementation

02/17/2004 PFLDnet 2004 25

Performance (cont.)

  Exploring the cause for the difference in
performance

  Known differences
  Used non threaded flavor of Globus
  Smaller protocol buffer
  Driver operates on vectors as opposed to buffers

